Two-grid Discretization Schemes of the Nonconforming Fem for Eigenvalue Problems

نویسنده

  • Yidu Yang
چکیده

This paper extends the two-grid discretization scheme of the conforming finite elements proposed by Xu and Zhou (Math. Comput., 70 (2001), pp.17-25) to the nonconforming finite elements for eigenvalue problems. In particular, two two-grid discretization schemes based on Rayleigh quotient technique are proposed. By using these new schemes, the solution of an eigenvalue problem on a fine mesh is reduced to that on a much coarser mesh together with the solution of a linear algebraic system on the fine mesh. The resulting solution still maintains an asymptotically optimal accuracy. Comparing with the two-grid discretization scheme of the conforming finite elements, the main advantages of our new schemes are twofold when the mesh size is small enough. First, the lower bounds of the exact eigenvalues in our two-grid discretization schemes can be obtained. Second, the first eigenvalue given by the new schemes has much better accuracy than that obtained by solving the eigenvalue problems on the fine mesh directly. Mathematics subject classification: 65N25, 65N30.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media

In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...

متن کامل

FEM Modelling of 3D Photonic Crystals and Photonic Crystal Waveguides

We present a finite-element simulation tool for calculating light fields in 3D nano-optical devices. This allows to solve challenging problems on a standard personal computer. We present solutions to eigenvalue problems, like Bloch-type eigenvalues in photonic crystals and photonic crystal waveguides, and to scattering problems, like the transmission through finite photonic crystals. The discre...

متن کامل

A comparative study of some time { stepping

We present a numerical comparison of some time{stepping schemes for the discretization and solution of the nonstationary incompressible Navier{Stokes equations. The spatial discretization is by nonconforming quadrilateral nite elements which satisfy the LBB{condition. The major focus is on the diierences in accuracy and eeciency between the Backward Euler-, Crank{Nicolson-or Fractional{step{{sc...

متن کامل

A two-grid discretization scheme for eigenvalue problems

A two-grid discretization scheme is proposed for solving eigenvalue problems, including both partial differential equations and integral equations. With this new scheme, the solution of an eigenvalue problem on a fine grid is reduced to the solution of an eigenvalue problem on a much coarser grid, and the solution of a linear algebraic system on the fine grid and the resulting solution still ma...

متن کامل

Finite Difference Methods

In this notes, we summarize numerical methods for solving Stokes equations on rectangular grid, and solve it by multigrid vcycle method with distributive Gauss-Seidel relaxation as smoothing. The numerical methods we concerned are MAC scheme, nonconforming rotate bilinear FEM and nonconforming rotate bilinear FVM. 1. PROBLEM STATEMENT We consider Stokes equation (1.1) 8 >< >: μ ~ u +rp =~ f in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009